Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

/!\ REMINDERS

■Product information in this catalog is as of October 2008. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or usage of the Products.

Please note that Taiyo Yuden Co., Ltd. shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this catalog or individual specification.

- Please contact Taiyo Yuden Co., Ltd. for further details of product specifications as the individual specification is available.
- Please conduct validation and verification of products in actual condition of mounting and operating environment before commercial shipment of the equipment.
- All electronic components or functional modules listed in this catalog are developed, designed and intended for use in general electronics equipment.(for AV, office automation, household, office supply, information service, telecommunications, (such as mobile phone or PC) etc.). Before incorporating the components or devices into any equipment in the field such as transportation,(automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network (telephone exchange, base station) etc. which may have direct influence to harm or injure a human body, please contact Taiyo Yuden Co., Ltd. for more detail in advance.

Do not incorporate the products into any equipment in fields such as aerospace, aviation, nuclear control, submarine system, military, etc. where higher safety and reliability are especially required.

In addition, even electronic components or functional modules that are used for the general electronic equipment, if the equipment or the electric circuit require high safety or reliability function or performances, a sufficient reliability evaluation check for safety shall be performed before commercial shipment and moreover, due consideration to install a protective circuit is strongly recommended at customer's design stage.

- The contents of this catalog are applicable to the products which are purchased from our sales offices or distributors (so called "TAIYO YUDEN's official sales channel"). It is only applicable to the products purchased from any of TAIYO YUDEN's official sales channel.
- Please note that Taiyo Yuden Co., Ltd. shall have no responsibility for any controversies or disputes that may occur in connection with a third party's intellectual property rights and other related rights arising from your usage of products in this catalog. Taiyo Yuden Co., Ltd. grants no license for such rights.
- Caution for export

Certain items in this catalog may require specific procedures for export according to "Foreign Exchange and Foreign Trade Control Law" of Japan, "U.S. Export Administration Regulations," and other applicable regulations. Should you have any question or inquiry on this matter, please contact our sales staff.

Should you have any question or inquiry on this matter, please contact our sales staff.

アキシャルリード形セラミックコンデンサ AXIAL LEADED CERAMIC CAPACITORS

OPERATING TEMP. -25~+85°C

特長 FEATURES

- ・汎用型セラミックコンデンサで、合わせて1pF~10μFと広い容量範囲で 部品の標準化が可能
- ・ラジアルに比べ自挿コストが安く、部品高さ低減、実装密度アップ、在 庫スペースも減少
- ・実装ピッチ5mmから26mmまでジャンパー線機能と兼用可能
- This widely used ceramic capacitor provide a wide capacitance range of 1pF through 10 μ F in one standard size and shape.
- · Automatic insertion related costs are lower than with radial type capaci-
- · Mounting pitch can be between 5mm to 26mm which could be used as a iumper.

用途 APPLICATIONS

- ·Class1品は回路の温度特性補正及び周波数特性の安定化。B、F特はバイ パスコンデンサに最適
- · The class 1 temperature compensating (NPO) products can be used in circuits to stabilize frequency and temperature characteristics.
- The B, and F dielectrics are optimum for bypass capacitors.

形名表記法 ORDERING CODE

定格電圧〔VDC〕	
L	10
Е	16
Т	25
G	35
U	50

形状寸	「法(L×φd) [mm]
075	4.2×3.2(積層形)
050	3.2×2.2(積層形)
025	2.3×2.0(積層形)

公称静電容量〔pF〕		
例		
010	1	
1R2	1.2	
103	10000	

容量許	容差
D-	±0.5pF
J-	± 5%
K-	±10%
M-	±20%
Z-	±80 %

8

つづら折り
袋づめ

形式 アキシャルリードコンデンサ

温度特	性
CH	0± 60(ppm/°C)
SL	+350~−1000(ppm/°C)
△B	±10%
△F	+30 -85 %

△=スペース

リード形状〔mm〕		
Α-	26mmテープ幅テーピング	
B-	52mmテープ幅テーピング	
KF	5.0ピッチフォーミング	
KE	7.5ピッチフォーミング	
NA	単品ストレートリード	

_	
当社管	理記号
△,△Z	積層標準品
△J	積層品(低電圧タイプ)
	△=スペース

Rated voltage (VDC)		
L	10	
Е	16	
Т	25	
G	35	
- 11	50	

Outsid	de Dimensions(L $ imes \phi$ d) (mm)
075	4.2×3.2(multilayer type)
050	3.2×2.2 (multilayer type)
025	2.3×2.0 (multilayer type)

Nomin	al Capacitance[pF]
example	
010	1
1R2	1.2
103	10000
	#R≡decimal point

Capaci	tance Tolerances
D-	±0.5pF
J-	± 5%
K-	±10%
M-	±20%
Z-	±80 %

9

Packaging						
В	Ammo					
С	Bulk					

Type Axial leaded capacitors

Temperature haracteristics								
CH	0± 60(ppm/°C)							
SL	+350~−1000 (ppm /°C)							
△B	±10%							
△F	+30 -85 %							

△=Blank space

Lead Configuration 26mm lead space, ammo pack B-52mm lead space, ammo pack KF 5.0mm pitch formed lead bulk 7.5mm pitch formed lead bulk NA Axial lead, bulk

Internal code Multilayer type △,△**Z** Standard products Multilayer type $\triangle J$ (Low voltage products)

△=Blank space

外形寸法 EXTERNAL DIMENSIONS

TYPE	Dimensions			テーピング品 Taped product	単品 Bulk Product		
ITFE	L	φD	φd	ストレート Straight	ストレート Straight	フォーミング Formed	
積層形075 (Multilayer Type)	4.2max (0.165max)	3.2max (0.126max)	0.55±0.05 (0.022±0.002)	B		Pitch:7.5mm (0.295)	
積層形050 (Multilayer Type)	3.2max (0.126max)	2.2max (0.87max)	0.45±0.05	52mm' (2.05) A	N A	K.F.	
積層形025 (Multilayer Type)	2.3max (0.09max)	2.0max (0.079max)	(0.018±0.002)	1 ← 26mm (1.02)		 Pitch: 5mm (0.197)	

Unit: mm(inch)

概略バリエーション AVAILABLE CAPACITANCE RANGE

WV 50V (UP) Temp.char. CH SL Type cap. 025 050 025 [pF] [pF: 3digits] 025 050 025 1 010 1.2	Class 1 (Temperature compensating)							
Type cap. [pF] [pF: 3digits] 1 010 1.2 1R2 1.5 1R5 1.8 1R8 2.2 2R7 2.7 2R7 3.3 3R3 3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 11 110 12 120 13 130 15 150 16 160 18 180 20 200 22 220 24 240 27 270 30 300 33 330 36 360 39 390 43 430 47 470 51 510 56 560 62 620 68 680 100 101 150 151 220 221 330 331 470 471 680 681	V	N	5	OV (UF	P)			
[pF] [pF: 3digits] 1 010 1.2 1R2 1.5 1R5 1.8 1R8 2.2 2R7 3.3 3R3 3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 11 110 12 120 13 130 15 150 16 160 18 180 20 200 22 220 24 240 27 270 30 300 33 330 33 330 33 330 33 330 33 330 33 330 33 330 34 47 470 51 510 56 560 62 620 68 680 100 101 150 151 220 221 330 331 470 471 680 681	Temp	.char.	С	Н	SL			
[pF]	Туре		025	050	005			
1.2 1R2 1.5 1R5 1.8 1R8 2.2 2R2 2.7 2R7 3.3 3R3 3.9 3R9 4.7 4R7 5.6 6.8 6R8 8.2 8R2 10 100 11 110 12 120 13 130 15 150 16 160 18 180 20 200 22 220 24 240 27 270 30 300 33 330 36 360 39 390 43 430 47 470 51 510 56 560 62 620 68 680 100 101 150 151 220 221 330 331 470 471 680 681	[pF]	[pF:3digits]	023	030	023			
1.5								
1.8	1.2							
2.2	1.5							
3.3 3R3 3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 11 110 12 120 13 130 15 150 16 160 18 180 20 200 22 220 24 240 27 270 30 300 33 330 36 39 390 43 430 47 470 51 510 56 560 62 620 68 680 100 101 150 151 220 221 330 331 470 471 680 681	1.8							
3.3 3R3 3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 11 110 12 120 13 130 15 150 16 160 18 180 20 200 22 220 24 240 27 270 30 300 33 330 36 39 390 43 430 47 470 51 510 56 560 62 620 68 680 100 101 150 151 220 221 330 331 470 471 680 681	2.2							
3.9	2.7							
4.7								
5.6								
6.8 6R8 8.2 8R2 10 100 11 1100 11 110 12 120 13 130 15 150 16 160 18 180 20 200 22 220 24 240 27 270 30 300 33 330 336 360 39 390 43 430 47 4770 51 510 56 560 62 620 68 680 100 101 150 151 220 221 330 331 470 471 680 681								
8.2 8R2 10 100 11 110 11 110 12 120 13 130 15 150 16 160 18 180 20 200 22 220 24 240 27 270 30 300 33 330 36 360 39 390 43 430 47 470 51 510 56 560 62 68 680 100 101 150 151 220 221 330 331 470 471 680 681								
10								
11								
13								
15								
16								
18								
20 200 22 220 24 240 27 270 30 300 33 330 36 360 39 390 43 430 47 470 51 510 56 560 62 620 68 680 100 101 150 151 220 221 330 331 470 471 680 681								
22								
24 240 27 270 30 300 33 330 36 360 39 390 43 430 47 470 51 510 56 560 62 620 68 680 100 101 150 151 220 221 330 331 470 471 680 681								
27 270 30 300 331 330 330 331 3470 471 680 681								
30 300 300 333 330 330 330 330 330 330								
33 330 330 336 360 399 390 43 430 477 470 51 510 566 560 62 620 68 680 100 101 150 151 220 221 330 331 470 471 680 681								
36 360 39 390 43 430 47 470 51 510 56 560 62 620 68 680 100 101 150 151 220 221 330 331 470 471 680 681								
39 390 43 430 47 470 51 51 510 56 560 62 620 68 680 100 101 150 151 220 221 330 331 470 471 680 681								
43								
51 510 56 560 62 68 680 100 101 150 151 220 221 330 331 470 471 680 681		430						
56 560 62 620 680 100 101 150 151 220 221 330 331 470 471 680 681								
62 620 68 680 100 101 150 151 220 221 330 331 470 471 680 681								
68 680 100 101 150 151 220 221 330 331 470 471 680 681								
100 101 150 151 220 221 330 331 470 471 680 681								
150 151 220 221 330 331 470 471 680 681								
220 221 330 331 470 471 680 681								
330 331 470 471 680 681								
470 471 680 681								
680 681								
1000 102	1000	102						

	(Ularka dia)				2000 C	T # 1000	100	HICKORY I		W. St. and Co.		- 春 国	マイ マ	プ (Mul	tilaver	type)
	(High diel	ectric			->			51/01	-\	051/	(TD)	1Q/E			tilayoi	
W	-			OV(UF			_	5V(GF		25V			16V	_		10V(LP)
Temp.	char.		В		I	=	E	3	F	В	F	E	3	F		F
Type	сар.	025	050	075	025	050	050	075	075	075	025	025	050	025	050	050
[pF]	[pF:3digits]	025	050	0/5	025	050	050	0/5	0/5	0/5	025	025	050	025	050	000
100	101															
120																
150																
180																
220 270	221 271															
330																
390																
470																
560	561															
680	681															
820																
1000																
1200 1500																
1800	182															
2200	222															
2700	272															
3300																
3900	392															
4700																
5600																
6800	682															
8200 10000																
12000	123															
15000																
18000																
22000																
27000	273															
33000	333															
39000 47000	393															
56000	473 563															
68000	683															
82000																
100000	104															
220000	224															
470000	474															
1000000	105															
2200000 4700000																
1000000																

温度特性 Temperature char.	静電容量変化率 Capacitance change	容量許容差 Capacitance Tolerance	Q又はtanδ Q or tanδ	種類 Class
СН	0± 60ppm/℃	D(±0.5pF) M(±20%) K(±10%)		1
SL	+350~-1000ppm/°C	J(±5%)	アイテム一覧参照	
△B	±10%	K(±10%)	eng·Refer to the Part munber	2
△F	± 30 %	Z(± 80 %)		2

※20℃における静電容量を基準。

※Capacitance characteristics measured at 20°C

アイテム一覧 PART NUMBERS

[積層025タイプ Multilayer 025 Type] —

Class 1							
定格電圧	形名	EHS (Environmental	温度特性	公 称 静電容量	容 量許 容差		絶縁抵抗
RatedVoltage		Hazardous	Temperature	Capacitance	Capacitance	Q or $\tan \delta$	Insulation
(DC)	Ordering code		characteristics		tolerance		resistance
(DC)	UP025△010D−○ Z	Substances) RoHS		1.0	tolerance		
	UP025△1R2D−○ Z	RoHS		1.2			
	UP025△1R5D−○ Z	RoHS		1.5			
	UP025△1R8D−○ Z	RoHS		1.8		— Q≧400+20C	
	UP025△2R2D−○ Z	RoHS		2.2	±0.5pF		
	UP025△2R7D−○ Z	RoHS		2.7	_0.001		
	UP025△3R3D−○ Z	RoHS		3.3	-		
	UP025△3R9D−○ Z	RoHS		3.9			
	UP025△4R7D−○ Z	RoHS		4.7			
	UP025△5R6K−○ Z	RoHS		5.6			
	UP025△6R8K−○ Z	RoHS	1	6.8	±10%		10000MΩmin
	UP025△8R2K−○ Z	RoHS	CH	8.2			
	UP025△100J−○ Z	RoHS	SL	10			
_	UP025△120J−○ Z	RoHS		12			
	UP025△150J−○ Z	RoHS		15			
50V	UP025△180J−○ Z	RoHS		18			
	UP025△220J−○ Z	RoHS		22			
	UP025△270J−○ Z	RoHS		27			
	UP025△330J−○ Z	RoHS		33			
	UP025△390J−○ Z	RoHS		39			
	UP025△470J−○ Z	RoHS		47			
	UP025△560J−○ Z	RoHS		56	±5%		
	UP025△680J−○ Z	RoHS		68			
	UP025△820J−○ Z	RoHS		82			
	UP025CH101J−○ Z	RoHS		100		Q≧1000	
	UP025CH151J−○ Z	RoHS		150			
	UP025CH221J−○ Z	RoHS		220			
	UP025CH331J−○ Z	RoHS	CH	330			
	UP025CH471J−○ Z	RoHS		470			
	UP025CH681J−○ Z	RoHS		680			
	UP025CH102J−○ Z	RoHS		1000			

形名の△には温度特性、○にはリード形状分類記号が入ります。

 $[\]triangle \mbox{Please}$ specify the temperature characteristics code and \bigcirc lead configuration code.

[積層025タイプ Multilayer 025 Type] Class 2

Class 2							
定格	形名	EHS	温度特性	公 称	容 量		絶縁抵抗
電圧	形 古	(Environmental		静電容量	許 容 差	0 , 5	
RatedVoltage		Hazardous	Temperature	Capacitance	Capacitance	Q or tan δ	Insulation
(DC)	Ordering code	Substances)	characteristics	(pF)	tolerance		resistance
	UP025 B101K −○ Z	RoHS		100			
	UP025 B121K −○ Z	RoHS		120			
	UP025 B151K −○ Z	RoHS		150			
	UP025 B181K −○ Z	RoHS		180			
	UP025 B221K −○ Z	RoHS		220			
	UP025 B271K −○ Z	RoHS		270			
	UP025 B331K −○ Z	RoHS		330			
	UP025 B391K −○ Z	RoHS		390			
	UP025 B471K −○ Z	RoHS		470			
	UP025 B561K −○ Z	RoHS		560			
	UP025 B681K −○ Z	RoHS	-	680			
	UP025 B821K - O Z	RoHS		820		$\tan \delta \leq 3.5\%$	5000M Ω min
50V	UP025 B102K - Z	RoHS		1000			
	UP025 B122K - Z	RoHS		1200			
	UP025 B152K −○ Z	RoHS RoHS	В	1500 2200	±10%		
	UP025 B222K - \ Z	RoHS		3300			
	UP025 B332K − ○ Z UP025 B472K − ○ Z	RoHS		4700			
	UP025 B682K - Z	RoHS		6800			
	UP025 B103K - Z	RoHS		10000	-		
	UP025 B153K −○ Z	RoHS		15000			
	UP025 B223K −○ Z	RoHS		22000			
	UP025 B333K −○ Z	RoHS		33000	1		
	UP025 B473K −○ Z	RoHS		47000			
	UP025 B683K −○ Z	RoHS		68000			1000MΩmin
	UP025 B104K −○ Z	RoHS		100000		tan δ ≦5.0%	
	EP025 B224K −○ Z	RoHS		220000			500MΩmin
16V	EP025 B474K −○ Z	RoHS		470000			200MΩmin
	EP025 B105K - Z	RoHS		1000000		$\tan \delta \leq 7.5\%$	100MΩmin
	UP025 F103Z - C Z	RoHS		10000			
50V	UP025 F223Z - C Z	RoHS		22000	_	tan δ ≦7.5%	1000M Ω min
	UP025 F473Z — Z	RoHS	_	47000	+80,,		
	UP025 F104Z — Z	RoHS	F	100000	+80 _% -20 [%]		
161/	EP025 F224Z — Z	RoHS		220000		tan δ ≦10.0%	500MΩmin
16V	EP025 F474Z - \(\) Z EP025 F105Z - \(\) Z	RoHS RoHS		470000 1000000		tan δ ≦17.5%	250MΩmin
	EP025 B122M - J	RoHS		1200		tail0 = 17.570	23010122111111
	EP025 B152M — J	RoHS		1500			
	EP025 B182M — J	RoHS		1800			
	EP025 B222M - J	RoHS		2200	1		
	EP025 B272M −○ J	RoHS	1	2700	1		
	EP025 B332M −○ J	RoHS		3300	1		
	EP025 B392M −○ J	RoHS		3900	1		
16V	EP025 B472M −○ J	 RoHS	В	4700	±20%	tan δ ≦3.5%	5000M Ω min
100	EP025 B562M −○ J	RoHS	D	5600	±∠U%	tano ≥3.5%	2000IVI ZITIII
	EP025 B682M −○ J	RoHS		6800			
	EP025 B822M −○ J	RoHS		8200			
	EP025 B103M −○ J	RoHS]	10000			
	EP025 B123M −○ J	RoHS		12000			
	EP025 B153M — J	RoHS		15000			
	EP025 B183M — J	RoHS		18000	-		
	EP025 B223M - J	RoHS		22000			
0514	TP025 F103Z — J	RoHS	_	10000	+800	1 5 / 7 50/	1000110
25V	TP025 F223Z — J	RoHS	F	22000	+80 _% -20 [%]	tan δ ≦7.5%	1000M Ω min
	TP025 F473Z −○ J	RoHS		47000			

形名の△には温度特性、○にはリード形状分類記号が入ります。

 $[\]triangle \mbox{Please}$ specify the temperature characteristics code and \bigcirc lead configuration code.

アイテム一覧 PART NUMBERS

[積層タイプ Multilayer type] -

Class 1								
定格	形名	El	HS	温度特性	公 称	容量		絶縁抵抗
電圧	ル 石	(Enviro	nmental	Temperature	静電容量	許容差	O ou ton 5	Insulation
RatedVoltage	0	Haza	ardous	characteristics	Capacitance	Capacitance	Q or tan δ	resistance
(DC)	Ordering code	Subst	tances)	Characteristics	(pF)	tolerance		resistance
	UP050CH220J-O Z	Ro	oHS		22			
*	UP050CH240J-OZ	Ro	oHS		24		Q≧400+20C	
	UP050CH270J-○ Z	Ro	oHS		27		Q=400+200	
*	UP050CH300J- O Z	Ro	oHS		30			
	UP050CH330J- O Z	Ro	oHS		33	1		
*	UP050CH360J-○ Z	Ro	oHS		36			
	UP050CH390J-○ Z	Ro	oHS		39			
*	UP050CH430J- OZ	Ro	oHS		43			
	UP050CH470J-○ Z	Ro	oHS		47			
*	UP050CH510J-○ Z	Ro	oHS		51			
	UP050CH560J-○ Z	Ro	oHS		56			
*	UP050CH620J-○ Z	Ro	oHS		62			
	UP050CH680J- O Z	Ro	oHS		68			
. ,	UP050CH750J-○ Z		oHS		75			
	UP050CH820J-○ Z		oHS		82			
*	UP050CH910J- O Z		oHS		91			
	UP050CH101J- O Z		oHS		100			
	UP050CH111J- O Z		oHS		110			
	UP050CH121J- () Z		oHS		120			1000014 0
	UP050CH131J- O Z		oHS		130		->	
50V	UP050CH151J- O Z		oHS	CH	150	± 5%	Q≧1000	10000MΩmin
	UP050CH161J- O Z		oHS		160	_		
	UP050CH181J- O Z		oHS		180			
*	UP050CH201J- O Z		oHS		200	_		
4	UP050CH221J- O Z		oHS		220			
	UP050CH241J- O Z		oHS		240			
	UP050CH271J- O Z		oHS		270	-		
*	UP050CH301J- O Z		oHS		300	-		
	UP050CH331J- ○ Z UP050CH361J- ○ Z		oHS oHS		330	-		
	UP050CH391J- O Z		oHS		390	_		
	UP050CH431J- O Z							
*	UP050CH471J- O Z		oHS oHS		430 470	_		
*	UP050CH511J- O Z		oHS		510			
	UP050CH561J- O Z		oHS		560	1		
	UP050CH621J- O Z		oHS		620	1		
^	UP050CH681J- O Z		oHS		680	-		
*	UP050CH751J- O Z		oHS		750	+		
. ,	UP050CH821J- () Z		oHS		820	+		
	UP050CH911J- Z		oHS		910	-		
^	UP050CH102J- O Z		oHS		1000	-		
-	0. 0000111020 0 2	l no	0110		1000			

形名の△には温度特性、○にはリード形状分類記号が入ります。 ★:オプション対応

★ : Option

 $[\]triangle$ Please specify the temperature characteristics code and \bigcirc lead configuration code.

[積層タイプ Multilayer type] Class 2

定格	形名	EHS	温度特性	公 称	容量		絶縁抵抗	
電圧	,,, ,,	(Environmental	Temperature	静電容量	許容差	Q or tan δ	Insulation	
tedVoltage	0	Hazardous		Capacitance	Capacitance	Quitano		
(DC)	Ordering code	Substances)	characteristics	(pF)	tolerance		resistance	
*	UP050 B122K- ○Z	RoHS		1200				
	UP050 B152K- ○Z	RoHS		1500				
*	UP050 B182K- ○Z	RoHS		1800				
	UP050 B222K- ○Z	RoHS		2200				
*	UP050 B272K- ○Z	RoHS		2700				
	UP050 B332K- ○Z	RoHS		3300				
*	UP050 B392K- ○Z	RoHS		3900				
	UP050 B472K- ○Z	RoHS		4700				
*	UP050 B562K- ○Z	RoHS		5600				
	UP050 B682K- OZ	RoHS		6800		tan δ ≦3.5%	5000M Ω m	
-	UP050 B822K- OZ	RoHS	B	8200				
	UP050 B103K- ○Z	RoHS		10000	1			
50V ★	UP050 B123K- ○Z	RoHS		12000	1			
	UP050 B153K- ○Z	RoHS		15000				
	UP050 B183K- ○Z	RoHS		18000	±10%			
	UP050 B223K- ○Z	RoHS		22000				
*	UP050 B273K- ○Z	RoHS		27000				
	UP050 B333K- ○Z	RoHS		33000				
*	UP050 B393K- ○Z	RoHS		39000				
	UP050 B473K- ○Z	RoHS		47000				
*	UP050 B563K- ○Z	RoHS		56000	-			
	UP050 B683K- ○Z	RoHS		68000			1000MΩm	
*	UP050 B823K- OZ	RoHS		82000				
	UP050 B104K- OZ	RoHS		100000		tan δ ≦5.0%		
	UP050 B224K- ○Z	RoHS		220000			500MΩm	
	UP050 B474K- OZ	RoHS		470000			200MΩm	
35V	GP050 B105K- ○Z	RoHS		1000000			100MΩm	
	EP050 B225K- OZ	RoHS		2200000		tan δ ≦7.5%	50MΩmii	
16V	EP050 B475K- ○Z	RoHS		4700000				
	EP050 B106K- ○Z	RoHS		10000000		$\tan \delta \leq 12.5\%$	20MΩmi	
	UP050 F103Z- OZ	RoHS		10000				
	UP050 F223Z- ○Z	RoHS	1	22000	1		4000145	
	UP050 F473Z- OZ	RoHS	1	47000	1	tan δ ≦7.5%	1000MΩm	
50V	UP050 F104Z- OZ	RoHS	1	100000	1			
	UP050 F224Z- OZ	RoHS	_	220000	+80%	. 5 < 10 00'	500110	
	UP050 F474Z- OZ	RoHS	F	470000	+80 _% -20 [%]	$\tan \delta \leq 10.0\%$	500MΩm	
	UP050 F105Z- ○Z	RoHS		1000000		. 5 < 450/	250MΩm	
16V	EP050 F225Z- OZ	RoHS	1	2200000	1	tan δ ≦15%	125MΩm	
10) (LP050 F475Z- ○Z	RoHS	1	4700000	ļ	1 5 / 17 501	50MΩmii	
10\/ -	LP050 F106Z- OZ	RoHS	1	10000000	1	$\tan \delta \leq 17.5\%$	25MΩmir	
	UP075 B105K- ○	RoHS		1000000		tan δ ≦5.0%	100MΩm	
50V			1 _	2200000	1		50MΩmii	
	GP075 B225K- O	RoHS			±10%	±10%	+on a < 7 50/	
50V 35V	GP075 B225K- ○ GP075 B475K- ○	RoHS	В	4700000	1070	tan δ ≦7.5%	00110	
			В	4700000 10000000	+80%	$\tan \delta \le 12.5\%$	20MΩmir	

形名の△には温度特性、○にはリード形状分類記号が入ります。 ★:オプション対応

 $[\]triangle$ Please specify the temperature characteristics code and \bigcirc lead configuration code.

^{★ :} Option

・静電容量-温度特性 Capacitance -vs- Temperature Characteristics

①最小受注単位数 Minimum Quantity

形式 Type	リード形状記号 Lead configuration	最小受注単位数(PCS) Minimum Quantity			
Турс	code	袋づめ Bulk	テーピング Taping		
	A-(26mm幅) 1.024 inch wide	_	2000 (075type) 3000 (050type) 5000 (025type)		
積層形 Multilayer type	B-(52mm幅)2.047 inches wide		2000 (075type) 3000 (050type) 5000 (025type)		
(075, 050, 025)	NA	1000			
	KE (075type) KF (025,050type)	3000, 4000 (025 type)			

②製品単品形状 Dimensions of Bulk Products

· NA形状 NA configuration

形式		寸 法 Dimensions (mm)						
Type	φD	L	φd	l				
積層形 025	2.0max	2.3max	0.45±0.05	20.0min				
Multilayer type	(0.079)	(0.09)	(0.018±0.002)	(0.787)				
積層形 050	2.2max	3.2max	0.45±0.05	20.0min				
Multilayer type	(0.087)	(0.126)	(0.018±0.002)	(0.787)				
積層形 075	3.2max	4.2max	0.55±0.05	20.0min				
Multilayer type	(0.126)	(0.165)	(0.022±0.002)	(0.787)				

Unit: mm (inch)

·KF/KE形状 KF/KE configuration

形 式 Type	リード形状記号 Lead configuration		寸 法	Dimensi	ions(mm)	
Турс	code	ϕD	L	W	φd	l
積層形 025	KF	2.0max	2.3max	5.0±0.5	0.45±0.05	6.5±0.5
Multilayer type	NF.	(0.079max)	(0.09max)	(0.197±0.020)	(0.018±0.002)	(0.256±0.020)
積層形 050	KF	2.2max	3.2max	5.0±0.5	0.45±0.05	6.5±0.5
Multilayer type	KF	(0.087max)	(0.126max)	(0.197±0.020)	(0.018±0.002)	(0.256±0.020)
積層形 075	KE	3.2max	4.2max	7.5±0.5	0.55±0.05	6.5±0.5
Multilayer type	NE	(0.126max)	(0.165max)	(0.295±0.020)	(0.022±0.002)	(0.256±0.020)

Unit: mm(inch)

③テーピング寸法 Taping Dimensions

A- (a: 26mm幅)形状 (a: 1.024 inch wide) configuration

形 式 Type		寸 法 Dimensions					
Турс	φD	L	а	b	L ₁ -L ₂	φd	insertion pitch
積層形 025	2.0max	2.3max				0.45±0.05	
Multilayer type	(0.079max)	(0.09max)	26-0			(0.018±0.002)	5.0
積層形 050	2.2max	3.2max		0.8以下	0.5max	0.45±0.05	(0.197)
Multilayer type	(0.087max)	(0.126max)	(1.024 ^{+0.020} ₋₀)	(0.031 or less)	(0.020max.)	(0.018±0.002)	
積層形 075	3.2max	4.2max				0.55±0.05	7.5
Multilayer type	(0.126max)	(0.165max)				(0.022±0.002)	(0.295)

Unit: mm(inch)

B- (a:52mm幅) 形状 (a:2.047 inches wide) configuration

形 式 Type		寸 法 Dimensions						
турс	φD	L	а	b	L ₁ -L ₂	φd	insertion pitch	
積層形 025	2.0max	2.3max				0.45±0.05		
Multilayer type	(0.079max)	(0.09max)	52+2			(0.018±0.002)	5.0	
積層形 050	2.2max	3.2max		1.2以下	1.0max	0.45±0.05	(0.197)	
Multilayer type	(0.087max)	(0.126max)	(2.047 +0.079 -0.039)	(0.047 or less)	(0.039max.)	(0.018±0.002)		
積層形 075	3.2max	4.2max				0.55±0.05	7.5	
Multilayer type	(0.126max)	(0.165max)				(0.022±0.002)	(0.295)	

Unit: mm(inch)

※075Typeはラジアルテーピングもオプション対応可能。

Specified Value			
Temterature Compensating (Class1)			Test Methods and Remarks
	wuitilayer type(Characteristics :B)	Iviuitilayer type (Characteristics : F)	
_25~+85℃			
50VDC No abnorminality	16VDC, 25VDC, 35VDC, 50VDC	10VDC, 16VDC, 25VDC, 35VDC, 50VDC	Applied voltage: Rated Voltage×3 (Class 1) Rated Voltage×2.5 (Class 2) Duration: 1 to 5 sec. Charge/discharge current: 50mA max. (Class 1,2)
No abnorminality			Metal globule method Applied voltage: Rated Voltage×2.5 Duration: 1 to 5 sec. Charge/Discharge current: 50mA max.
10000MΩmin.	Rated Noltage 16VDC B: 12009F~22000pF 1500MΩ min 170000pF 200MΩ min 1700000pF 200MΩ min 1700000pF 20MΩ min 1700000pF 20MΩ min 17000000pF 20MΩ min 1700000pF 20MΩ min 170000pF~100000pF 1500MΩ min 170000pF~100000pF 100MΩ min 170000pF~100000pF~100000pF 100MΩ min 1700000pF~100000pF~1000000pF~100000pF~100000pF~100000pF~100000pF~100000pF~100000pF~1000000pF~1000000pF~1000000pF~1000000pF~1000000pF~1000000pF~1000000pF~1000000pF~1000000pF~1000000pF~1000000pF~1000000pF~10000000pF~10000000pF~10000000pF~10000000pF~10000000pF~10000000pF~100000000pF~10000000000	Rated Ivoltage : 10VDC F: 4700000pF : 50MΩmin Rated Ivoltage : 16VDC F: 220000pF : 500MΩmin 100000pF : 250MΩmin 100000pF : 250MΩmin 2200000pF : 125MΩmin Rated voltage : 25VDC F: 10000pF~47000pF(Item△J) : 1000MΩmin Rated voltage : 35VDC F: 1000000pF : 25MΩmin Rated voltage : 50VDC F: 1000000pF : 25MΩmin 100000pF : 500MΩmin 220000pF~100000pF : 500MΩmin 220000pF~100000pF : 500MΩmin 220000pF : 500MΩmin 220000pF : 500MΩmin 220000pF : 500MΩmin	Applied voltage: Rated voltage Duration: 60±5 sec.
	Multilayer type -25~+85°C -25~+85°C 50VDC No abnorminality	Temterature Compensating (Class1) High Permitt	Temterature Compensating (Class1)

			Specified Value		T	
It	em	Temterature Compensating (Class1)		tivity(Class2)	Test Methods a	and Remarks
6. Capacitano	e:	Multilayer type ±0.5pF ±5% ±10%	B: ±10%、±20% (Item△J)	Multilayer type (Characteristics : F) F: +80 -20%		C>10 μF) C≤1000pF) C>1000pF) C≤10 μF) C>10 μF)
3. Capacitance :	(When	30pF or under: Q≥400+20C 33pF or over: Q≥1000 C: Nominal Capacitance: [pF] CH: 0±60 SL: -350~+1000 [ppm/°C]	Rated Ivoltage: 16VDC B: 1200pF~22000pF(Item△J): 3.5%max 100000pF : 5.0%max 220000pF~470000pF: 5.0%max 470000pF~2000000pF: 12.5%max Rated Ivoltage: 25VDC B: 1000000pF : 12.5% max Rated Ivoltage: 35VDC B: 1000000pF : 5.0%max 2200000pF~4700000pF: 7.5% max Rated Ivoltage: 35VDC B: 1000000pF : 5.0%max 2100000pF : 5.0%max 2200000pF~4700000pF: 7.5% max Rated Ivoltage: 50VDC B: 100pF~39000pF : 3.5%max 47000pF~1000000pF : 5.0%max	Rated Ivoltage: 10VDC F: 470000pF~10000000pF: 17.5% max Rated Ivoltage: 16VDC F: 220000pF : 10.0%max 4700000pF : 17.5%max 100000pF : 17.5%max 2200000pF : 15.0% max Rated Ivoltage: 25VDC F: 10000pF~47000pF(Item△J): 7.5% max Rated Ivoltage: 35VDC F: 10000000pF : 17.5%max Rated Ivoltage: 50VDC F: 10000000pF : 17.5%max Rated Ivoltage: 50VDC F: 10000pF~100000pF : 7.5% max 22000pF~470000pF : 10.0% max 1000000pF : 15.0% max F: +30%	Measurement of capacitance shall be made to calculate tic by the following equation $\frac{(C85-C20)}{C20\times \Delta T}\times 10^{8}$ Change of maximum castep 1 to 5 (Class 2) Temperature at step 1: 20°C Temperature at step 2: -25°C Temperature at step 5: 20°C Temperature at step 3: 20°C	temperature characteris 1. (Class 1) (ppm/°C) pacitance deviation i mperature at step 4:85°C
9. Terminal Strength	Tensile	No abnomalities, such as cuts of	or looseness of terminals.		Apply the stated tensile for sively in the direction to compare the sively in the direction to compare the sively in the state of the six of th	
					Nominal wire diameter	[s]
	Torsional	No abnomalities, such as cuts of the second			Suspend a mass at the enter body through angle of 90° and This operation is done over second bend in the opposite Number of bends : 2 time: Nominal wire diameter Bending forcommoderate [mm] [N]	d return it to initial position a period of 5 sec. The direction shall be made

lt o m	Temterature Commercial (OL 4)	100E B 100	ivity (Class?)	Toot Mother to and Domestic
Item	Temterature Compensating (Class1)		ivity (Class2)	Test Methods and Remarks
lesistance to Vaibration	Multilayer type Appearance: No significant abnomality Withstanding Voltage: No abnomality	, ,,	Multilayer type (Characteristics : F) Appearance : No significant abnomality Withstanding Voltage : No abnomality	According to JIS C 5102 clause 8.2
	pr or andor	Rated Voltage: 16VDC B Capacitance :	Rated Voltage : 10VDC	Vibration type: A Directions: 2 hrs each in X, Y and Z directions
	5.6pF \sim 8.2pF : Within \pm 10% : Within \pm 5% Q:	$\begin{array}{l} 1200 p F \sim 22000 p F (Item \triangle J) : Within \pm 20\% \\ 220000 p F \sim 100000000 p F : Within \pm 10\% \end{array}$	Capacitance: Within +80 % tan δ:	Total: 6 hrs Frequency range: 10 to 55 to 10Hz (1min)
	30pF or under : Q≧400+20C 33pF or over :	tan δ: 1200pF~22000pF(Item△J): 3.5%max 220000pF~470000pF: 5.0%max	4700000pF~10000000pF: 17.5% max Insulation Resistance: 4700000pF : 50MΩmin	Amplitude: 1.5 mm Mounting method: Soldering onto the PC bo
	Q≧1000 Insulation resistance : 10000MΩmin.	1000000pF \sim 2200000pF : 7.5%max 470000pF \sim 10000000pF : 12.5%max Insulation Resistance: 1200pF \sim 22000pF(ltem \triangle J) : 5000M Ω min	1000000pF : 25MΩmin Rated Voltage : 16VDC	
	C : Nominal Capacitance : [pF]	220000pF :500MΩ min	F Capacitance: Within +80 %	
		2200000pF :50MΩ min 4700000pF \sim 10000000pF :20MΩ min	tan δ: 220000pF : 10.0%max 470000pF : 10.0%max	
		Rated Voltage: 25VDC B Capacitance : Within ±10%	1000000pF : 17.5%max 2200000pF : 15.0%max Insulation Resistance:	
		tan δ : 10000000pF : 12.5%max Insulation Resistance:	220000pF :500MΩmin 470000pF :500MΩmin 1000000pF :250MΩmin	
		10000000pF : 20MΩmin Rated Voltage: 35VDC B	2200000pF :125MΩmin Rated Voltage : 25VDC	
		Capacitance : Within ±10% tan δ: 1000000pF : 5.0%max	F Capacitance: Within +80 %	
		2200000pF~470000pF : 7.5% max Insulation Resistance: 1000000pF : 100MΩmin 2200000pF : 50MΩ min	$tan \delta$: 10000pF~47000pF(ltem \triangle J): 7.5%max Insulation Resistance: 10000pF~47000pF(ltem \triangle J): 1000M Ω min	
		4700000pF : 20MΩ min Rated Voltage: 50VDC	Rated Voltage : 35VDC	
		B Capacitance : Within $\pm 10\%$ tan δ :	Capacitance: Within +80 % tan δ:	
		100pF~39000pF : 3.5% max 47000pF ~1000000pF : 5.0% max Insulation Resistance: 100pF~39000pF : 5000MΩmin	10000000pF : 17.5%max Insulation Resistance : 10000000pF : 25MΩmin	
		47000 pF \sim 100000pF : 1000MΩmin 220000pF : 500MΩmin 470000pF : 200MΩmin	Rated Voltage: 50VDC	
		1000000pF : 100MΩmin	Capacitance: Within +80 % tan δ: 10000pF~100000pF : 7.5%max	
			220000pF~470000pF : 10.0%max 1000000pF : 15.0%max Insulation Resistance : 10000pF~100000pF : 1000MΩmin	
			220000pF~470000pF : 500MΩmin 1000000pF : 250MΩmin	

Item	Temterature Compensating(Class1)	Specified Value High Permitt	ivity(Class2)	Test Methods and Remarks
itom	Multilayer type		Multilayer type (Characteristics :F)	. 331 Wolfford and Hoffland
. Free Fall	Appearance : No significant abnomality	Appearance : No significant abnomality	Appearance: No significant abnomality	Drop Test: Free fall
	Withstanding Voltage: No abnomality Capacitance: Within ±5%	Withstanding Voltage : No abnomality	Withstanding Voltage: No abnomality	Impact material : Floor
	4.7pF or under : Within ±0.5pF	Rated Voltage: 16VDC	Rated Voltage: 10VDC	Height: 1 m
	5.6pF~8.2pF : Within ±10%	B Capacitance :	F	Total number of drops : 5 times
	10pF or over : Within ±5%	Capacitance: 1200pF~22000pF(Item△J):Within ±20%	Capacitance : Within +80 %	rotal number of drops to times
	Q:	220000pF~10000000pF : Within ±10%		
	30pF or under :	tanδ: 1200pF~22000pF(Item△J) : 3.5%max	tanδ: 4700000pF~10000000pF : 17.5% max	
	Q≧400+20C 33pF or over :	220000pF~470000pF :5.0%max	Insulation Resistance:	
	Q≧1000	1000000pF~2200000pF : 7.5%max 4700000pF~10000000pF : 12.5%max	4700000pF : 50MΩmin	
	Insulation resistance : 10000MΩmin.	Insulation Resistance:	10000000pF : 25MΩmin	
	C: Nominal Capacitance: [pF]	1200pF \sim 22000pF(Item \triangle J) : 5000M Ω min 220000pF : 500M Ω min	Rated Voltage: 16VDC	
		470000pF : 200MΩ min	F ±00	
		1000000pF : 100MΩ min 2200000pF : 50MΩ min	Capacitance: Within $^{+80}_{-20}$ %	
		4700000pF~10000000pF : 20MΩ min	tanδ:	
		Rated Voltage : 25VDC	220000pF : 10.0%max	
		B	470000pF : 10.0%max	
		Capacitance : Within ±10% tanδ:	1000000pF : 17.5%max 2200000pF : 15.0%max	
		10000000pF : 12.5%max	Insulation Resistance:	
		Insulation Resistance:	220000pF : 500MΩmin	
		10000000pF	470000pF : 500MΩmin 1000000pF : 250MΩmin	
		Rated Voltage: 35VDC	2200000pF : 125MΩmin	
		B Capacitance : Within ±10%	Rated Voltage : 25VDC	
		tanδ:	Rated Voltage : 25VDC	
		1000000pF : 5.0%max 2200000pF~4700000pF : 7.5% max	Capacitance: Within +80 %	
			-20 **	
		Insulation Resistance: 1000000pF : 100MΩmin	tanδ:	
		2200000pF : 50MΩ min	10000pF~47000pF(Item△J) : 7.5%max Insulation Resistance :	
		4700000pF : 20MΩ min	10000pF~47000pF(ltemΔJ) :1000MΩmin	
		Rated Voltage: 50VDC		
		B	Rated Voltage : 35VDC	
		Capacitance : Within ±10% tanδ:	F Capacitance: Within +80 %	
		100pF~39000pF : 3.5% max	Capacitance : Within =20 76	
		47000pF ~1000000pF : 5.0% max Insulation Resistance:	tanδ:	
		100pF~39000pF : 5000MΩmin	10000000pF : 17.5% max	
		47000pF~100000pF : 1000MΩmin 220000pF : 500MΩmin	Insulation Resistance : 10000000pF : 25MΩmin	
		470000pF : 200MΩmin	2011211111	
		1000000pF : 100MΩmin	Rated Voltage : 50VDC	
			F +80	
			Capacitance: Within $^{+80}_{-20}$ %	
			tanδ:	
			10000pF~100000pF : 7.5% max	
			220000pF~470000pF : 10.0% max	
			1000000pF : 15.0% max Insulation Resistance :	
			10000pF~100000pF :1000MΩmin	
			220000pF~470000pF : 500MΩmin 1000000pF : 250MΩmin	
			. 230W1211IIII	
Body Strength	No abnomality ayah as dama ==			
body strength	No abnomality such as damage.			Applied force: 19.6N
				Duration: 5 sec.
				Speed: Shall attain to specified force in 2 sec
				п 1 1
				\ ¹ /0.5R
				1.5mm (025type)
Solderability	At least 75% of lead surface is cover	ered with new solder.		Solder temperature : 230±5℃
				Duration: 2±0.5 sec. (This test may be a
				cable after 6 months storage.)

	T 1 1 2 (-:)	Specified Value	(01 0)	T
Item	Temterature Compensating (Class1)	-	tivity (Class2)	Test Methods and Remarks
14. Soldering	Multilayer type Appearance: No significant abnomality Withstanding Voltage: No abnomality	Multilayer type(Characteristics :B) Appearance : No significant abnomality Withstanding Voltage : No abnomality	Multilayer type (Characteristics : F) Appearance : No significant abnomality Withstanding Voltage : No abnomality	Solder temperature : 270±5°C
	0	Rated Voltage: 16VDC	Rated Voltage: 10VDC	Duration: 5±0.5 sec.
	Capacitance change : 8.2pF or under : Within ±0.25pF	В	F	Immersed conditions: Inserted into the PC board
	10pF or over : Within ±2.5%	Capacitance change : 1200pF~22000pF(Item△J) : Within ±7.5%	Capacitance change : Within ±20.0% tan δ:	(with t=1.6mm, hole=1.0mm diameter) Preconditioning: 1 hr of preconditioning at 150 ⁺⁰ ₋₁₀ °C
	Q: 30pF or under:	22000000pF~10000000pF : Within ±10.0% tan δ:	4700000pF~10000000pF: 17.5% max Insulation Resistance:	followed by 48±4 hrs of recovery
	Q≧400+20C	1200pF~22000pF(Item△J):3.5%max	4700000pF : 50MΩmin	under the standard condition.
	33pF or over: Q≧1000	220000pF~470000pF:5.0%max 1000000pF~2200000pF:7.5%max	10000000pF : 25MΩmin	Recovery: Recovery for the following period under
	Insulation resistance :10000MΩmin.	4700000pF~10000000pF : 12.5%max Insulation Resistance:	Rated Voltage: 16VDC	the standard condition after the test.
	C : Nominal Capacitance : [pF]	1200pF~22000pF(Item△J):5000MΩmin	Capacitance change : Within ±20.0%	24±2 hrs (Class 1)
		220000pF	tanδ: 220000pF~470000pF:10.0%max	48±4 hrs (Class 2)
		1000000pF :100MΩ min 2200000pF :50MΩmin	1000000pF : 17.5%max 2200000pF : 15.0%max	
		4700000pF~10000000pF : 20MΩ min	Insulation Resistance:	
		Rated Voltage: 25VDC B	$\begin{array}{lll} 220000 p F {\sim} 470000 p F : 500 M \Omega \text{min} \\ 1000000 p F : 250 M \Omega \text{min} \\ 2200000 p F : 125 M \Omega \text{min} \\ \end{array}$	
		Capacitance change : $10000000pF$: Within $\pm 10.0\%$ $\tan \delta$:	Rated Voltage: 25VDC	
		10000000pF : 12.5%max Insulation Resistance:	Capacitance change : Within ±20.0% tanδ:	
		10000000pF : 20MΩmin	10000pF~47000pF(Item△J) : 7.5% max	
		Rated Voltage: 35VDC	Insulation Resistance: 10000pF~47000pF(Item△J):1000MΩmin	
		B Capacitance change:	Rated Voltage: 35VDC	
		1000000pF~4700000pF: Within ±10.0% tan δ:	F Capacitance change: Within ±20.0%	
		1000000pF : 5.0%max	tanδ:	
		2200000pF~4700000pF : 7.5% max Insulation Resistance:	10000000pF : 17.5% max Insulation Resistance:	
		1000000pF : 100MΩmin 2200000pF : 50MΩmin	10000000pF : 25MΩmin	
		4700000pF : 20MΩmin	Rated Voltage: 50VDC	
		Rated Voltage: 50VDC	Capacitance change : 10000pF~100000pF : Within ±20.0%	
		Capacitance change : 100pF~39000pF : Within ±7.5%	tanδ: 10000pF~100000pF : 7.5% max	
		47000pF~1000000pF : Within ±10.0%	220000pF~470000pF:10.0% max	
		tanδ: 100pF~39000pF : 3.5%max	1000000pF : 15.0% max Insulation Resistance:	
		47000pF~1000000pF : 5.0%max Insulation Resistance:	10000pF~100000pF : 1000MΩmin 220000pF~470000pF : 500MΩmin	
		100pF~39000pF : 5000MΩmin	1000000pF : 250MΩmin	
		47000pF \sim 100000pF : 1000MΩmin : 500MΩmin		
		470000pF : 200MΩmin		
		1000000pF : 100MΩmin		

Withstanding voltage is also referred to as "voltage proof" under IEC specifications.

Thermal Shock is also referred to as "rapid change of temperature" under IEC specifications.

Item	Temterature Compensating(Class1)	Specified Value High Permitt	ivity(Class2)	т	est Methods and Ren	narks
item	Multilayer type	Multilayer type (Characteristics : B)		· '	est Methous and hen	iiains
. Resistance to Solvent	No significant abnormality in appear		According to JIS C 5102 clause 8.7.4. Type of test: Method 1 Solvent temperature: 20 to 25°C Duration: 30±5 sec. Solvent Type: A in Table 23, Isopropyl alcohol			
S.Thermal Shock	Appearance: No significant abnomality Withstanding Voltage: No abnomality	Appearance :No significant abnomality Withstanding Voltage :No abnomality	Appearance: No significant abnomality Withstanding Voltage: No abnomality	Conditions f	or 1 cycle Temperature[°C]	Duration [min]
		pForunder: Within ±0.5pF B	Rated Voltage: 10VDC	1	Room temperature -25±3	Within 3
	Q:	1200pF~22000pF(Item\(\triangle J\)): Within \(\pm 12.5\)%	Capacitance change: Within ±30.0% tanδ:	3	Room temperature	Within 3
	: 8.2pF or under Q≧200+10C	220000pF~10000000pF : Within ±15.0% tanδ:	4700000pF~10000000pF: 20.0% max Insulation Resistance:	4	+85±0	30±3
	: 10pF~30pF Q≧275+2.5C	1200pF~22000pF(Item△J) : 5.0% max 220000pF~470000pF : 7.5%max	4700000pF	5	Room temperature	Within 3
	33pF or over: Q≧350	1000000pF~2200000pF :10.0%max	Rated Voltage: 16VDC		noom temperature	Within 3
	Insulation resistance: 1000MΩmin.	Insulation Resistance: 1200pF~22000pF(Item△J) : 1000MΩmin	F Capacitance change : Within ±30.0%	Number of c	vcles: 5	
	C : Nominal Capacitance [pF]	220000pF : 125MΩmin 470000pF : 50MΩmin	tanδ: 220000pF~470000pF:15.0%max		ng: 1 hr of precondition	ning at 150 ±0
		1000000pF : 25MΩmin 2200000pF : 12.5MΩmin	1000000pF : 22.5%max 2200000pF : 17.5% max	1 roodiidiioii	followed by 48±4 h	
		22000000pF : 5MΩmin	Insulation Resistance: 220000pF : 100MΩmin		under the standard	
		Rated Voltage: 25VDC	470000pF : 50MΩmin 1000000pF : 25MΩmin		ecovery for the follow	
		Capacitance change :	2200000pF : 25MΩ min		e standard condition a m test chamber.	arter the remo
		10000000pF : Within ±15.0% tan δ:	Rated Voltage : 25VDC		±2 hrs (Class 1)	
		10000000pF : 15.0%max Insulation Resistance:	Capacitance change: Within ±30.0%	48	±4 hrs (Class 2)	
		10000000pF : 5MΩmin	tanδ: 10000pF~47000pF(Item△J): 12.5%max			
		Rated Voltage: 35VDC B	Insulation Resistance : 10000pF∼47000pF(Item△J) : 500MΩmin			
		Capacitance change : 1000000pF : Within ±15.0%	Rated Voltage : 35VDC			
		2200000pF~4700000pF : Within ±15.0% tan δ:	F Capacitance change: Within ±30.0%			
		1000000pF : 7.5%max 2200000pF~470000pF : 10.0%max	tanδ: 10000000pF : 20.0%max			
		Insulation Resistance: 1000000pF :25MΩmin	Insulation Resistance: 10000000pF :5MΩmin			
		2200000pF :25MΩmin 4700000pF :5MΩmin	Rated Voltage : 50VDC			
			F			
		Rated Voltage: 50VDC	Capacitance change: 10000pF~1000000pF : Within ±30%			
		Capacitance change: 100pF~39000pF : Within ±12.5%	tanδ: 10000pF~100000pF_:12.5%max			
		47000pF~1000000pF : Within ±15.0% tan δ:	220000pF~470000pF : 15.0%max 1000000pF : 17.5%max			
		100pF~39000pF : 5.0%max 47000pF~1000000pF : 7.5%max	Insulation Resistance: 10000pF~100000pF : 500MΩmin			
		Insulation Resistance:	220000pF~470000pF : 250MΩmin 1000000pF : 50MΩmin			
		100pF \sim 39000pF : 1000MΩmin 47000pF \sim 100000pF : 500MΩmin				
		220000pF : 250MΩmin 470000pF : 100MΩmin				
		1000000pF : 50MΩmin				
	i .	·	i .	1		

Item	Temterature Compensating(Class1)	Specified Value High Permitt	ivity(Class2)	Test Methods and Remarks
itom	Multilayer type	Multilayer type(Characteristics :B)	Multilayer type (Characteristics :F)	rest Wethods and Hemane
Damp Heat	Appearance : No significant abnomality	Appearance: No significant abnomality	Appearance: No significant abnomality	emperature: 40±2°C
(steady state)	Withstanding Voltage: No abnomality	Withstanding Voltage: No abnomality	Withstanding Voltage: No abnomality	Humidity: 90 to 95 % RH
	Capacitance change:	Rated Voltage : 16VDC B	Rated Voltage: 10VDC	Duration: 500^{+24}_{-0} hrs
	8.2pF or under : Within ± 0.5 pF 10pF or over : Within ± 5.0 %	Capacitance change:	Capacitance change: Within ±30.0%	Preconditioning: 1 hr of preconditioning at 150+0
	Q:	1200pF~22000pF(Item△J) : Within ±12.5% 220000pF~10000000pF : Within ±15.0%	tanδ: 470000pF~1000000pF:20.0%max	followed by 48±4 hrs of recov
	: 8.2pF or under Q≧200+10C	tanδ:	Insulation Resistance:	under the standard condition.
	:10pF~30pF	1200pF~22000pF(Item△J):5.0%max 220000pF~470000pF :7.5%max	4700000pF : 10MΩmin 10000000pF : 5MΩmin	Recovery: 24±2 hrs of recovery under the standa
	Q≧275+2.5C 33pF or over:	1000000pF~2200000pF : 10.0%max 4700000pF~10000000pF : 22.5%max	Rated Voltage : 16VDC	condition after the removal from test cha
	Q≧350	Insulation Resistance:	F	ber. (Class 1)
	Insulation resistance:	1200pF \sim 22000pF(Item \triangle J) : 1000MΩmin 220000pF : 125MΩmin	Capacitance change : Within $\pm 30.0\%$ tan δ :	: 1 hr of preconditioning at 150 ⁺¹⁰ °C
	1000MΩmin.	470000pF : 50MΩmin	220000pF~470000pF:15.0%max	lowed by 48±4 hrs of recovery under
	C : Nominal Capacitance [pF]	1000000pF : 25MΩmin 2200000pF : 12.5MΩmin	1000000pF :22.5%max 2200000pF :17.5%max	standard condition after the removal f
		4700000pF~10000000pF :5MΩmin	Insulation Resistance: 220000pF :100MΩmin	chamber. (Class 2)
		Rated Voltage : 25VDC	470000pF :50MΩmin	
		B Capacitance change:	1000000pF :25MΩmin 2200000pF :25MΩmin	
		10000000pF : Within ±15.0%	·	
		tanδ: 10000000pF :15.0%max	Rated Voltage : 25VDC	
		Insulation Resistance:	Capacitance change: Within ±30.0%	
		10000000pF : 5MΩmin	tanδ: 10000pF~47000pF(Item△J):12.5%max	
		Rated Voltage : 35VDC Capacitance change :	Insulation Resistance : 10000pF~47000pF(Item△J) : 500MΩmin	
		1000000pF : Within ±15.0%		
		2200000pF \sim 4700000pF : Within \pm 15.0% tan δ :	Rated Voltage : 35VDC	
		1000000pF : 10.0%max	Capacitance change: Within ±30.0%	
		2200000pF~4700000pF:10.0%max Insulation Resistance:	tanδ: 10000000pF : 20.0%max	
		1000000pF :25MΩmin	Insulation Resistance: 10000000pF :5MΩmin	
		2200000pF :25MΩmin 4700000pF :5MΩmin	·	
		Rated Voltage : 50VDC	Rated Voltage: 50VDC	
		В	Capacitance change :	
		Capacitance change : 100pF~39000pF : Within ±12.5%	10000pF \sim 1000000pF : Within \pm 30% tan δ :	
		47000pF~1000000pF : Within ±15.0%	10000pF~100000pF : 12.5% max	
		tanδ: 100pF~39000pF :5.0% max	220000pF~470000pF : 15.0% max 1000000pF : 17.5% max	
		47000pF∼1000000pF ∶ 7.5% max Insulation Resistance	Insulation Resistance: 10000pF~10000pF : 500MΩmin	
		100pF~39000pF : 1000MΩmin	220000pF~470000pF : 250MΩmin	
		47000pF \sim 100000pF : 500MΩmin 220000pF : 250MΩmin	1000000pF : 50MΩmin	
		470000pF : 100MΩmin		
		1000000pF : 50MΩmin		

Multilayer type Multilayer type (Characteristics :B) Multilayer type (Characteristics :F) 8. Loading under Damp Heat Appearance : No significant abnomality Withstanding Voltage : No abnomality Withstanding Voltage : No abnomality Capacitance change : 8.2p For under : Within ±0.75pF 10p For over : Within ±7.5% Q: 30p For under: Q≥200pF~2000pF(tem△J) : Within ±22.5% tan δ: 1200pF~22000pF(tem△J) : SOM max 220000pF~470000pF : 12.5M min 100000pF = 122.5M min 100000pF : 125.5M min 1000000pF : 125.5M min 100000pF : 125.5M m	4	Temperature Community (O)	Specified Value	tivity (Classo)	Took Mathada and D
	Item	Temterature Compensating (Class1) Multilaver type	-		Test Methods and Remarks
Methatandring Voltage : No abnormality Methandring Voltage : 16 vDC Sape For under Within ±2.078pt Saper or under Within ±2.078pt Capacitance change : Undoope = Within ±2.078pt Capacitance change : Within ±3.078pt Capacitance change : Undoope = Within ±1.078pt Capacitance change : Within ±3.078pt Capacitance change : Undoope = Within ±1.078pt Capacitance change : Within ±3.078pt Capacitance change : Undoope = Within ±1.078pt Capacitance change : Within ±3.078pt Capacitance change : Undoope = Within ±1.078pt Capacitance change : Within ±3.078pt Capacitance change : Withi	18. Loading under Damp	Appearance : No significant abnomality	Appearance : No significant abnomality	Appearance : No significant abnomality	Temperature: 40±2°C
Supple or under		vvitnstanding Voltage: No abnomality	Withstanding Voltage : No abnomality		·
Capacitance change : Within ±2.5% Capacitance change : Within			_	Rated Voltage: 10VDC	Duration: 500 ⁺²⁴ ₋₀ hrs
20000pF - 1000000pF : Within ±15.0% 100000pF - 1000000pF : Within ±25.9% max 100000pF - 100000pF : 10.0% max 100000pF - 20000pF 10.0% max 1000000pF 10.0% max 10000000pF 10.0% max 1000000pF 10.0% max 10000000pF 10.0% max 10000000pF		10pF or over : Within ±7.5%	Capacitance change :		Applied voltage: Rated voltage
SapE or over 1: 1000pf − 22000pf 10mm 1000000pf 12.5M min 100000pf 12.5M min 1000000pf 12.5M min 100000pf 12.5M min 1000000pf 12.5M min 1000000pf 12.5M min			220000pF~1000000pF : Within ±15.0%	4700000pF~10000000pF: 20.0% max	Preconditioning : 1 hr of preconditioning at 150 $^{+10}_{-0}$ %
Name		Q≧100+10/3*C	tanδ:	4700000pF : 5MΩmin	followed by 48±4 hrs of recover
C : Nominal Capacitance (pF) C : Nominal Capacitance Eph				10000000pF : 2.5MΩmin	
C : Nominal Capacitance [pF] Insulation Resistance:		Insulation resistance : 500MΩmin.			
220000pF 5.0M.Ωmin 1000000pF 12.5M.Ωmin 1000000pF 12.5M.Ωmin 1000000pF 12.5M.Ωmin 1000000pF 13.5M.Ωmin 1000000pF 12.5M.Ωmin 1000000pF 12.5M.Ωmin 1000000pF 12.5M.Ωmin 1000000pF 13.5M.Ωmin 1000000pF 13.5M.Ωm		C : Nominal Capacitance [pF]	Insulation Resistance	Capacitance change : Within ±30.0%	
1000000pF 12.5M min 1200000pF 17.5% max 1000000pF 17.5% max 1000000pF 12.5M min 1000000pF 10000000pF 1000000pF 10000000pF 10000000pF 10000000pF 1000000pF 10000000pF			220000pF : 50MΩmin	220000pF~470000pF: 15.0%max	
470000pF1000000pF : 2.5MΩmin 470000pF 2.5MΩmin 170000pF 2.5MΩmin 17000000pF 2.5MΩmin 17000000pF 2.5MΩmin 170000000pF 2.5MΩmin 17000000pF 2.5MΩmin 1700000pF 2.5MΩmin 17000000pF 2.5MΩmin 170000000pF 2.5MΩmin 17000000pF 2.5MΩmin 170000000pF 2.5MΩmin 1700000000000000000000000000000000000			1000000pF :12.5MΩmin	2200000pF : 17.5%max	lowed by 48±4 hrs of recovery under the
Rated Voltage : 25VDC 1000000pF :25MΩmin 200000pF :12.5MΩmin 200000pF :1000000pF :2.5MΩmin 200000pF :2.5MΩmin 200000pF :2.5MΩmin 200000pF :2.5MΩmin 200000pF :10.0%max 1000000pF :10.0%max 1000000pF :2.5MΩmin 2000000pF :3.5MΩmin 2000000pF :3.5MΩmin 200000pF :3.5MΩmin 200000pF :3.5MΩmin 200000pF :3.5MΩmin 200000pF :3.5MΩmin 200000pF :3.5MΩmin 200000pF :3.5MΩmin 20000pF :3.5MΩmin					standard condition after the removal from
Capacitance change : 10000000pF			Rated Voltage: 25VDC	470000pF : 25MΩmin 1000000pF : 12.5MΩmin	chamber. (Class 2)
Tan Tan			Capacitance change :		
Insulation Resistance : 1000000pF 10			tanδ:	F	
Rated Voltage : 35VDC B Capacitance change : 100000pF Within ±15.0% F 2200000pF Within ±15.0% Capacitance change : Within ±25.5% tan δ : 1000000pF 10.0% max 1000000pF 10.0% max 1000000pF 12.5MΩmin 2200000pF 5.5MΩmin 4700000pF 5.5MΩmin 470000pF 1000000pF 112.5% max 1000pF~39000pF 100000pF 112.5% max 1000pF~4700000pF 112.5% max 10000pF~4700000pF 112.5% max 1000pF~470000pF 112.5% max 10000pF~4700000pF 112.5% max 10000pF~4700000pF 112.5% max 120000pF~4700000pF 125.5% max 120000pF~4700000pF 125.5% max 120000pF~4700000pF 125.5% max 120000pF~470000pF 1			Insulation Resistance:	tanδ:	
Capacitance change : 1000000pF Within ±15.0% 1000000pF Within ±22.5% 1anδ : 1000000pF 10.0% max 1000000pF 10.0% max 1000000pF 10.0% max 1000000pF 12.5MΩmin 1200000pF 12.5MΩmin			Rated Voltage: 35VDC	Insulation Resistance:	
2200000pF :Within ±15.0% Capacitance change : Within ±30.0% tan δ :			Capacitance change :		
tan δ : 10000000pF : 20.0%max 1000000pF : 20.0%max 1000000pF : 2.5MΩmin 1000000pF : 2.5MΩmin 1000000pF : 2.5MΩmin 220000pF : 5.0MΩmin 220000pF : 5.0MΩmin 270000pF : 2.5MΩmin 22000pF : 2.5MΩmin 2.5M			2200000pF : Within ±15.0%	Capacitance change: Within ±30.0%	
2200000pF~470000pF : 10.0%max Insulation Resistance : 1000000pF 12.5MΩmin 220000pF 2.5MΩmin 470000pF 2.5MΩmin 22000pF~470000pF 12.5MΩmin 22000pF~470000pF 12.5MΩmin 100pF~39000pF 100000pF~100000pF 12.5% max 12.5% max			tanδ:	10000000pF : 20.0%max	
1000000pF :12.5MΩmin 220000pF :5.0MΩmin 470000pF :2.5MΩmin 220000pF :2.5MΩmin					
2200000pF :5.0MΩmin 4700000pF :2.5MΩmin F Capacitance change : 10000pF~1000000pF : Within ±30.0% tan δ : 1000pF~39000pF :Within ±12.5% 47000pF~1000000pF :Within ±15.0% tan δ : 1000pF~39000pF :Within ±15.0% tan δ : 1000pF~39000pF :T.55% max 1000pF~39000pF :T.55% max Insulation Resistance : 10000pF~1000000pF :250MΩmin 220000pF~100000pF :250MΩmin 220000pF :250MΩ min 220000pF :250MΩ min 470000pF :250MΩ min 220000pF :250MΩ min :2				Rated Voltage : 50VDC	
Rated Voltage : 50VDC B			2200000pF : 5.0MΩmin	F	
B			·	10000pF~1000000pF : Within ±30.0%	
100pF~39000pF Within ±12.5% 1000000pF 17.59% max 17.59% max			В	10000pF~100000pF : 12.5% max	
tan δ : 100pF~39000pF : 5.0%max 47000pF~100000pF : 7.5%max 47000pF~100000pF : 5.0MΩmin 1000pF~39000pF : 5.0MΩmin 47000pF~100000pF : 250MΩ min 22000pF : 25MΩ min 470000pF : 25MΩ min 470000pF : 25MΩ min 470000pF : 25MΩ min			100pF~39000pF : Within ±12.5%	1000000pF : 17.5% max	
47000 pF \sim 1000000pF : 7.5%max 1000000 pF : 25MΩmin 100000 pF : 25MΩmin 10000 pF \sim 39000pF : 500MΩ min 1000 pF \sim 10000pF : 25MΩ min 1000 pF : 25MΩ min					
Insulation Resistance : $100 \text{pF} \sim 39000 \text{pF}$: $500 \text{M} \Omega$ min $47000 \text{pF} \sim 100000 \text{pF}$: $250 \text{M} \Omega$ min 220000pF : $125 \text{M} \Omega$ min 470000pF : $250 \text{M} \Omega$ min			100pF~39000pF : 5.0%max	220000pF~470000pF: 125MΩmin	
47000pF~10000pF : 250MΩ min 22000pF : 125MΩ min 47000pF : 25MΩ min			Insulation Resistance:		
220000pF : 125MΩ min 47000pF : 25MΩ min			100pF~39000pF : 500MΩ min		
			220000pF : 125MΩ min		

		Specified Value	1 tr (2)	
Item	Temterature Compensating (Class1)	-	ivity(Class2) Multilayer type(Characteristics:F)	Test Methods and Remarks
19. High Temperature	Multilayer type Appearance: No significant abnomality	Appearance : No significant abnomality	Appearance : No significant abnomality	T
Lading Test	Withstanding Voltage: No abnomality	Withstanding Voltage : No abnomality	Withstanding Voltage: No abnomality	Temperature : $85\pm {3\atop 0}$ °C Duration : $1000\pm {0\atop 0}$ hrs
	Capacitance change :	Rated Voltage : 16VDC	Rated Voltage: 10VDC	Applied voltage: Rated voltage×2
	8.2pF or under :Within ±0.3pF 10pF or over :Within ±3.0%		Capacitance change: Within ±30.0%	Rated voltage × 1.5
	Q:	1200pF~22000pF(Item△J): Within ±12.5%	tanδ: 4700000pF~10000000pF:20.0% max	Class 2: B 1000000pF (025Type)
	: 8.2pF or under Q≧200+10C	220000pF~1000000pF : Within ±15.0% 1000000pF~10000000pF : Within ±22.5%	Insulation Resistance: 4700000pF : 10MΩmin	B 220000pF~1000000pF (050Type, 075Type)
	:10pF 30pF	tanδ:	10000000pF : 5MΩmin	Preconditioning: 1 hr of preconditioning at 150+0 °C
	Q≧275+2.5C 33pF or over:	1200pF~22000pF(Item△J) : 5.0% max 220000pF~470000pF : 7.5%max	Rated Voltage: 16VDC	followed by 48±4 hrs of recovery
	Q≧350 Insulation resistance : 1000MΩmin.	1000000pF~2200000pF:10.0%max 4700000pF~10000000pF:22.5%max	F Capacitance change : Within ±30.0%	under the standard condition.
		Insulation Resistance:	tanδ: 220000pF~470000pF:15.0%max	Recovery: 24±2hrs of recovery under the standard
	C : Nominal Capacitance [pF]	1200pF \sim 22000pF(Item \triangle J): 1000M Ω min 220000pF : 125M Ω min	1000000pF : 22.5%max	condition after the removal from test cham-
		470000pF :50MΩmin	2200000pF : 17.5% max Insulation Resistance:	ber. (Class1)
		1000000pF :25MΩmin 2200000pF :12.5MΩmin	220000pF : 100MΩmin	: 1 hr of preconditioning at 150 $^{+10}_{-0}$ °C
		4700000pF~10000000pF:5.0MΩmin	470000pF : 50MΩmin 1000000pF : 25MΩmin	followed by 48±4 hrs of recovery under
		Rated Voltage : 25VDC	2200000pF : 25MΩmin	the standard condition after the removal
		B Capacitance change :	Rated Voltage: 25VDC	from chamber. (Class 2)
		10000000pF : Within ±22.5%		
		tanδ: 10000000pF : 22.5% max	tanδ: 10000pF~47000pF(Item△J): 10.0% max	
		Insulation Resistance : 10000000pF : 5MΩmin	Insulation Resistance: 10000pF∼47000pF(Item△J): 500MΩmin	
		Rated Voltage : 35VDC B	Rated Voltage: 35VDC F Capacitance change: Within ±30.0%	
		Capacitance change :	tanδ:	
		1000000pF : Within ±15.0% 2200000pF : Within ±15.0%	10000000pF : 20.0% max Insulation Resistance:	
		4700000pF : Within $\pm 22.5\%$ tan δ :	10000000pF : 5MΩmin	
		1000000pF : 10.0%max 2200000pF~4700000pF : 10.0%max	Rated Voltage : 50VDC	
		Insulation Resistance:	Capacitance change: 10000pF~100000pF: Within ±30.0%	
		1000000pF : 25MΩmin 2200000pF : 25MΩmin	tanδ: 10000pF~100000pF : 10.0%max	
		4700000pF : 5MΩmin	220000pF~470000pF:12.5%max	
		Rated Voltage : 50VDC	1000000pF : 17.5%max Insulation Resistance :	
		B Capacitance change :	10000pF~100000pF : 500MΩmin 220000pF~470000pF : 250MΩmin	
		100pF~39000pF : Within ±12.5%	1000000pF : 50MΩmin	
		47000 pF~ 1000000 pF : Within $\pm 15.0\%$ tan δ :		
		100pF~39000pF : 5.0% max 47000pF~1000000pF : 7.5% max		
		Insulation Resistance:		
		100pF \sim 39000pF : 1000MΩmin 47000pF \sim 100000pF : 500MΩmin		
		220000pF : 250MΩmin		
		470000pF : 100MΩmin 1000000pF : 50MΩmin		

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results:
In order to provide correlation data, the test shall be conducted under condition of 20±2°C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure.Unless otherwise specified, all the tests are conducted under the "standard condition." Withstanding voltage is also referred to as "voltage proof" under IEC specifications.

Precautions on the use of Axiel Leaded Ceramic Capacitors

Stages	Precautions	Technical considerations
1. Circuit Design	 ◆ Verification of operating environment, electrical rating and performance 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any capacitors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. ◆ Verification of Rated voltage (DC rated voltage) 1. The operating voltage for capacitors must always be lower than their rated values. If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages should be lower than the rated value of the capacitor chosen. For a circuit where both an AC and a pulse voltage may be present, the sum of their peak voltages should also be lower than the capacitor's rated voltage. 2. Even if the applied voltage is lower than the rated value, the reliability of capacitors might be reduced if either a high frequency AC voltage or a pulse voltage having rapid rise time is present in the circuit. ◆ Self-generated heat (Verification of Temperature) 1. If the capacitors specified only for DC use are used in AC or pulse circuits, the AC or a pulse current can generate heat inside the capacitor so the self-generated temperature rise should be limited to within 20°C. The surface temperature measured should include this self-temperature rise. Therefore, it is required to limit capacitor surface temperature including self-generated heat should not exceed the maximum operating temperature of +85°C. 	1-1. When an AC or a pulse voltage is applied to capacitors specified for DC use, even if the voltage is less than the rated voltage, the AC current or pulse current running through the capacitor will cause the capacitor to self-generate heat because of the loss characteristics. The amount of heat generated depends on the dielectric materials used, capacitance, applied voltage, frequency, voltage waveform, etc. The surface temperature changes due to emitted heat which differs by capacitor shape or mounting method. Please contact Taiyo Yuden with any questions regarding emitted heat levels in your particular application. It is recommend the temperature rise be measured in the actual circuit to be used. 1-2. For capacitors, the voltage and frequency relationship is generally determined by peak voltage at low frequencies, and by self-generated heat at high frequencies. (Refer to the following curve.) Sum of the peak voltage (peak to peak) Self-generated heat limit Difference in self-generated heat relative to capacitance
	 ◆ Operating Environment precautions 1. Capacitors should not be used in the following environments: (1)Environmental conditions to avoid a. exposure to water or salt water. b. exposure to moisture or condensation. c. exposure to corrosive gases (such as hydrogen sulfide, sulfurous acid, chlorine, and ammonia) 	
2. PCB Design	When capacitors are mounted onto a PC board, hole dimensions on the board should match the lead pitch of the component, if not it will cause breakage of the terminals or cracking of terminal roots covered with resin as excess stress travels through the terminal legs. As a result, humidity resistance performance would be lost and may lead to a reduction in insulation resistance and cause a withstand voltage failure.	
Considerations for automatic insertion	 ◆ Adjustment Automatic Insertion machines (leaded components) 1. When inserting capacitors in a PC board by auto-insertion machines the impact load imposed on the capacitors should be minimized to prevent the leads from chucking or clinching. 	When installing products, care should be taken not to apply distortion stress as it may deform the products. Our company recommends the method to place the lead with fewer loads that join the product.

Precautions on the use of Axiel Leaded Ceramic Capacitors

Stages	Precautions	Technical considerations
4. Soldering	 ♦ Selection of Flux 1. When soldering capacitors on the board, flux should be applied thinly and evenly. 2. Flux used should be with less than or equal to 0.1 wt% (equivalent to Chroline) of halogenated content. Flux having a strong acidity content should not be applied. 3. When using water-soluble flux, special care should be taken to properly clean the boards. ♦ Wave Soldering 	1. Flux is used to increase solderability in wave soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. 2. With too much halogenated substance (Chlorine, etc.) content is used to activate the flux, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the capacitors. 3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of capacitors in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux. 1. If capacitors are used beyond the range of the recommended conditions, heat stresses
	1.Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions. 2. Do not immerse the entire capacitor in the flux during the soldering operation. Only solder the lead wires on the bottom of the board.	may cause cracks inside the capacitors, and consequently degrade the reliability of the capacitors. 2. When the capacitors are dipped in solder, some soldered parts of the capacitor may melt due to solder heat and cause short-circuits or cracking of the ceramic material. Deterioration of the resin coating may lower insulation resistance and cause a reduction of withstand voltage.
	◆ Recommended conditions for using a soldering iron: Put the soldering iron on the land-pattern. Soldering iron's temperature - below 350°C Duration - 3 seconds or less Numbers of times - 1 times The soldering iron should not directly touch the capacitor.	I. If products are used beyond the range of the recommended conditions,heat stress may deform the products,and consequently degrade the reliability of the products.
5. Cleaning	 Board cleaning When cleaning the mounted PC boards, make sure that cleaning conditions are consistent with prescribed usage conditions. 	The resin material used for the outer coating of capacitors is occasionally a wax substance for moisture resistance which can easily be dissolved by some solutions. So before cleaning, special care should be taken to test the component's vulnerability to the solutions used. When using water-soluble flux please clean the PCB with purified water sufficiently and dry thoroughly at the end of the process. Insufficient washing or drying could lower the reliability of the capacitors.
6. Post-cleaning-process	 Application of resin molding, etc. to the PCB and components. Please contact your local Taiyo Yuden sales office before performing resin coating or molding on mounted capacitors. Please verify on the actual application that the coating process will not adversely affect the component quality. 	1-1. The thermal expansion and coefficient of contraction of the molded resin are not necessarily matched with those of the capacitor. The capacitors may be exposed to stresses due to thermal expansion and contraction during and after hardening. This may lower the specified characteristics and insulation resistance or cause reduced withstand voltage by cracking the ceramic or separating the coated resin from the ceramics. 1-2. With some types of mold resins, the resin's decomposition gas or reaction gas may remain inside the resin during the hardening period or while left under normal conditions, causing a deterioration of the capacitor's performance. 1-3. Some mold resins may have poor moisture proofing properties. Please verify the contents of the resins before they are applied. 1-4. Please contact Taiyo Yuden before using if the hardening process temperature of the mold resins is higher than the operating temperature of the capacitors.
7. Handling	Mechanical considerations Be careful not to subject the capacitors to excessive mechanical shocks. Withstanding voltage failure may result. If ceramic capacitors are dropped onto the floor or a hard surface they should not be used.	Because the capacitor is made of ceramic, mechanical shocks applied to the board may damage or crack the capacitors. Ceramic capacitors which are dropped onto the floor or a hard surface may develop defects and have a higher risk of failure over time.
8. Storage conditions	◆ Storage 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions: Ambient temperature Below 40 °C Humidity Below 70% RH. Products should be used within 6 months after delivery. After the above period, the solderability should be checked before using the capacitors. 2. Capacitors should not be kept in an environment filled with decomposition gases such as (sulfurous hydrogen, sulfurous acid, chlorine, ammonia, etc.) 3. Capacitors should not be kept in a location where they may be exposed to moisture, condensation or direct sunlight.	Under high temperature/high humidity conditions, the decrease in solderability due to the oxidation of terminal electrodes and deterioration of taping and packaging characteristics may be accelerated.